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. Description of D-log E Curves by
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Electronic computing machines offer to the sensitometrist not only speed, precision, and economy,
but olso new freedom in choosing porometers for desribing sensitometric. effects.  Many
propertiss of primary interest which are not easy to measure by graphical methods con be
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though several properiies vary simultansously,

Photographic sensitometry has, since its beginning,
relied heavily upon graphical methods. Density
va. log exposure curves are commonly plotted and

.+ grawn by hand, after which values of speed, con-

T

teaat, and fog are measured from them.

In recent
howsver, high-speed digital computers have

"'_,’Amade it practical to compute these same values

directly from the digitel density data. A significant

; mpmvement in time, cost, and precision can result
'~ in largescale operations where automatic data-

recording is practical. :
But if digital methods are to surpass graphical
methods in factors other than time, cost, and pre-

. gision, they must not be restricted to imitating graph-

jeal technigues.  Bacause high-speed dats-processing

" is a new boot with mew capabilities, photographic

sensttometry may pmﬁtab}y exploit it to do new
things
It is therafore sennible to reconsider Mﬂagﬂy

the problems of defining » set of ablweviated deserip-
 tions of the significant festures of sendiometric

curves in terms of what may be called sensitometric

parameters. Most investigators may agree that,
" even through the choice of specific parameters will
" depend upon the immediate problem, the following

three properties are quite general requirements.
1. The parameters should be few in number.

. 2. They should retain the significant information

of the original density data.

5 They should comvey this. mtarmaum in de&r,'

convenient, and usefzs,i bexmgs

of &peeﬁ contrast. )md fcg

mbsﬁed the secon‘

#nted in part at the Annual Confl
'ﬂwewed 5 August 1960. -

St

- Photographic scientists ‘have not been satmﬁed
- with the degree to which the-traditional parameters

if one can construct the entire D-log E curve on the
basis of the information contained in the parametric
data, and generally this cannot be done with con-
fidence.

One way to satisfy the requirement, in a way
adaptable to automatic computation, is to postulate
that a perticular mathematical model will satis-
factorily simulate each D-log E curve at hand, pro-
vided its paramelers are properly chosen. As an
illustration of this approach, consider the function:

y = M)
lustrated in Fig. 1. The curve of this model has

an S-shape similar to thet of a typical D-log B
curve, If one now adds three parameters fo form

Y o= e T (2).

one has the sguation for the curve known in the field
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, NLY, 8(“‘ b 1958




36 . BAYER, SIMONDS, AND WILLIAMS
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Fig. 2. D-log E curve for an experimental control. The reference
curve, y = F(x), is obtained by subtracting the minimum density, yuin.

of statistics as the logistic curve of growth. Now
suppose that Eq. (2) be fitted to each of a group
of D-log E curves, associating y with density above
fog and x with log exposure. If the fit is good,
then different values of k&, a, and x, will correspond to
different D-log E curves; and, since one can con-
struct the original curves from knowing only the
values of %, a, and x,, these parameter values con-
tain the same basic information as the original set of
densities. If these parameters are also convenient
and useful as sensitometric indices, then they
comprise a set which satisfies the requirements
listed before. Unfortunately, however, simple em-
pirical models such as this one often fail to fit D-log
E curves met in practice. Or even if a good fit
is found, the parameters of the well-fitting model
may not measure directly the kinds of changes in
which the investigator is primarily interested.

It should be emphasized that many models can
be found which, by simultaneous adjustment of
three or four parameters, will satisfactorily fit D-log
E curves encountered in practice. The real problem
is to find a model which will not only fit D-log E
curves, but also describe the curves in simple mean-
ingful terms, such as speed, contrast, or fog.

But even as computers are not restricted to
imitating graphical methods, neither are they re-
stricted to standard functional forms. Whereas
reason dictates that the results of an analysis be
simple and concise, there is no requirement that
the actual data-handling be so. Today, automatic
computers can perform complicated numerical opera-
tions repeatedly and rapidly. This facility allows
the experimenter broad limits within which to
choose practical definitions for a set of sensitometric
parameters.

This paper describes a simple alternative to
using a prescribed mathematical function as a
model for a D-log E curve. By a device which will
be explained, the method of simulating a D-log E
curve by a mathematical equation is changed from a
specialized technique to a flexible way of exploiting
the capabilities of data processors to achieve an
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Fig. 3. A simple kind of speed change, obtained by shifting o
reference curve, y = F(x), to the left by a log E increment h.

analysis specifically tailored to meet specific re-
quirements.

An lllustration of the Method

Let us suppose that sensitometric tests have been
made of a large number of experimental films
and that their speed, contrast, and fog values are
to be compared with those of a control film. Each'
experimental film is represented by a test strip.
from which are made measurements of densities,
2;, resulting from a series of exposures, x;. The data
for such a strip might be tabulated as follows:

Log Exposure Density
X1 2
X2 23
X3 23
Xi 2k

Ordinarily, a D-log E curve for each test strip would
be drawn; and by means of straight-edge, or special|
transparent overlay, indices of speed, contrast, and:
fog would be obtained. Inthe case of a great numbeI
of strips, it is desirable, if possible, to employ auto-;
matic data-processing instead of graphical measure:
ment.

For the purpose of automatic data-processmg,
a new point of view may be taken in regard to the
definition of speed, contrast, and fog. The followmﬂ*
simple concepts of these parameters are suggested:{

1. Speed is simply a measure of required exposure!
level. Two curves alike in shape but dis|
placed along the log-exposure axis differ in|
speed, and only in speed.

2. Fog is an underlying density upon which the-
useful part of the D-log E relationship i}
superimposed. Two curves alike except for 8/
small displacement along the density axist
differ in fog, and only in fog. {
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Yhe = ¢F(x+h)
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Fig. 4. A simple kind of contrast change, obtained by multiplying
the density of the lower curve at each log E value by a constant factor ¢,

3. Contrast is represented by the gradient of the
D-log E curve. Two curves with the same
minimum density, in which the gradient of
one at each value of log exposure is a constant
multiple of the gradient of the other at the
same log exposure, differ in contrast, and only
in contrast.

In order to provide a common reference for the
parameter values, each of the experimental films
may be compared with an experimental standard or
control, whose D-log E curve is given in Fig. 2.
The densities of this film may be represented by the
equation:

Density = ywin + F(x), (3)

where ymin i8 the density of an unexposed, processed
portion of the film and x is log exposure. In the
remaining discussions, reference will be made to
y = F(x) as the “reference curve.”

Effecting the three simple speed, contrast, and
fog changes just described in the reference curve
will produce an infinite variety of curves. Within
this domain of possible curve shapes, a reasonable
match can be expected for each of the curves of the
experimental films.

Shifting the reference curve, y = F(x) from Fig.
2, to the left by an amount h will produce the curve
of Fig. 3. It has a density, at log exposure x, of

¥ = F(x + h). (4)

A curve that is like the one of Fig. 3 can be said to
have a speed of h relative to the reference curve.

In a similar way, multiplying the curve of Fig. 3
by a constant multiplier, ¢, will yield a curve which
differs from the reference curve not only in speed
but also in contrast. This treatment yields the
curve of Fig. 4, which has the equation

Ve = ¢F(x + h). (5)

At each value of log exposure, the gradient of the
curve of Fig. 4 is a constant multiplier, ¢, of the
gradient of the curve of Fig. 3. A curve nearly
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Log exposure 3

Fig. 5. A simple kind of fog change, obtained by shifting the lower
curve upward by an amount f.

identical with that of Fig. 4 can be said to have a
speed of k and a contrast of ¢ relative to the reference
curve.

Adding to the curve of Fig. 4 a constant density
increment, f, will yield the curve

Yier = [ + cF(x + h), (6)

shown in Fig. 5. A curve nearly identical with Fig.
5 can be said to have a speed of A, a contrast of ¢,
and a fog of f relative to the curve of Fig. 4.

Now let us consider the more realistic case in
which a particular curve is to be compared with
the reference curve. Of the infinite variety of
curves which may be produced by varying f, ¢,
and % in Eq. (4), a unique set of variations must be
found which will produce an optimum match with
the sample curve to be evaluated. If this can be
done, the corresponding best values of f, ¢, and h
can be used as measures of fog, contrast, and speed.

These indices have the following properties as
sensitometric parameters:

1. They are few in number.

2. Provided only that the variant of the reference
curve closely simulates the sample curve to be
measured, the values of h, ¢, and f contain as
much basic information as the original den-
sities of the sample.

3. The parameters are defined according to the
stated concepts of speed, contrast, and fog,
and therefore convey their information in
clear, convenient, and useful terms.

The foregoing defines a set of sensitometric in-
dices. There are three problems to solve before
the system described can be employed as a working
method. (1) some reasonable criterion for the best
match, in mathematical form, is required; (2) a
numerical method for finding the best values of
f, ¢, and h by automatic computation is needed;
and (3) some way to treat the case in which the
actual and fitted curves differ excessively must be
found.
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An Application of the Least-Squares Method

In order to define the “best match” in mathe-
matical terms, it is first necessary to have some
applicable measure of the discrepancy between the
actual curve and any arbitrary variant of the refer-
ence curve. At any value of log exposure, the
difference between the density z of the curve to be
measured and the density yi., of the adjusted refer-
ence curve will be

2 —yhg =2—I[f+cFlx+h))] (7)
Densities zj, 2., . . .z; are measured at a finite number
of values of log exposure x,, x», ...x:.. It is clear

that any measure of the discrepancy between the
two curves will be some function of the differences:

e, =2 —f —cF(x, + h)
ex =2z —f —cF(xy + h)

e = 2, — f = CF(x,': + h). (8)

Any one of several possible functions might be
used. For example, one might define as the best
set of values, &, ¢, and f, that which makes as small
as possible the largest of e, es, . . ., e,. This criterion
is simple in principle. Unfortunately, it can be
awkward in the face of random experimental errors
in the data, and difficult to program for automatic
computation.

The criterion of least squares fits the chosen
mathematical model to the empirical D-log E curve
with what is usually an acceptable degree of approxi-
mation; it affords a useful test of goodness of fit;
and, fortunately, it is simple to apply. This cri-
terion employs as a measure of the discrepancy
between the actual and the fitted curve the sum
of squares of the e;.

88 = e;’. 9)

1

I tg =

The best match is that for which SS is a minimum.
This requirement that SS be made as small as
possible leads to a logical treatment of data which
contain random measurement errors. The fits ob-
tained usually appear reasonable. Furthermore,
the method is easily adapted to digital methods.

Numerical Methods for Computing
Parameter Values
The problem is to fit the equations,
Zi =f+cFlxi +hand1 =1,2, ...,k (10)

to a set of densities 2,, 2,, . .., 2y, choosing f, ¢, and
h so that the sum of squares of residuals,

(zi — 2i)% (11)
1

SS =

It

i

is made as small as possible. In Egs. (10) and (11),
z; is the value of yi.;at x,. The general solution is
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complicated by the fact that 2Z; is a nonlinear func-
tion of A.

There is a simple approximate method for find-
ing values of f, ¢, and & which works well when &
is known to be small. The function F(x; + k) can
be represented by the Taylor’s series,

F(x; +h) = F(x;) + hF'(x;) + (h2/2)F"(xi) + ...

When % is small, the first two terms of this series
may be taken as an approximation to the effect of a
horizontal shift. Thus, Eq. (10) may be replaced
by the approximation,

222 f + cF(xi) + chF' (xi). (12)

Here, F(x;) is simply the value of the reference
curve at log exposure x;, and F’(x;) is the corre-
sponding gradient.

Equation (12) is an ordinary regression equation,
linear in f, ¢, and the product, ch. Methods for
fitting such equations are well documented. Best
values of f, ¢, and ch are given by simple linear
equations of the form,

f=wnz +wpz + ...... + wpzr;
C = Wa21 + Wea2e + ... ... + wezy;
ch = Wz + Weaeza + . ... + Wiz (13)

The coefficients w;; depend only upon the deusities
of the reference curve and on the particular set of
values, x;, x», ... x; chosen. Equations (13) are
therefore simple to use to evaluate any number of
sets of data relative to the same reference curve,
for which the multipliers wy. . . . w.s: can be obtained
in an advance calculation. They are easy to pro-
gram for a digital computer because they involve only
multiplication and addition.

When 4 is large, Eq. (12) may be found inadequate.
One must then consider a solution which does not
depend on such a simple approximation as Eq. (12).
A description of one method of analysis in this more
complex situation is given in the Appendix to this
paper.

Degree of Fit

The value of the system just defined depends
partly on whether the fitted equation provides a
satisfactory approximation to the measured densi-
ties it represents. The sum of squares SS is an
indicator of the degree of fit, inasmuch as no de
viation can exceed the square root of SS, and no
deviation will usually exceed, say, one half of this

value. Of course, a look at the individual differ-

ences (z; — 3;) is better than a look at their sum of
squares.
Experience with the equation,

Vg = [ + cFlx + h), (14)

has shown it to be adequate for most curves of black-
and-white negative materials, for which it is com-
mon practice not to measure densities in the regio?
of maximum density. When the set of parameters
chosen does not provide a good fit. then the rang®

J
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of densities over which the fit is made may be
important. Thus, when shoulder-region densities
are included in the data, a different treatment may
be desirable. When the fit is poorer than desired,
the solution has usually been the addition of one
more parameter. The nature of this additional
parameter, when not suggested by a priori knowledge
of the group of curves, is best determined from an
examination of the discrepancy for a sample of
curves. [Either a subjective appraisal or a numeri-
cal analysis of the density deviations will usually
disclose a common pattern in the discrepancies,
and on this the definition of a new parameter may
be based.

It is possible to choose a greater number of pa-
rameters than can be accurately estimated. If three
parameters will provide a good fit, then the addition
of a fourth parameter may improve the fit slightly,
but will probably lead to poorer estimation of the
individual parameter values.

The Method in General

The foregoing is intended as an example of a
general method which has these features:

APPENDIX. A More Accurate

In the section on numerical methods for computing
parameter values, we indicated a simple approximate
method for fitting the equation,

Yy = [ + cFlx + h), (1a)

to a set of measured densities. That method was said to
yield good approximations to the least-squares values of
h, ¢, and f when h is small. This Appendix describes a
method which can be used to yield accurate values
within a wide range of the parameter A. The method is
easily adapted to a computing machine, such as the IBM
705 Data Processor.

In deriving this method, the following notation will be
used:

1. The measured densities of the sample will be called:

21,22 .+ .y Zke
2. The corresponding log exposure values will be called:
X1, X25 .« 0.y Xke

3. Substituting these k values of log exposure into Eq.
(1a) will yield % values of yi.s; these are functions of
h, ¢, and f and will be called: z,, z:, ..., 2k

4, Similarly substituting the % values of log exposure
into F(x 4+ h) will yield k functions of h; these will
be called: uy, us, ..., Uk

5. The first partial derivatives of F(x + h) with respect
to h are also functions of h; these will be called:
w’, w', .., .

Using the above notation, we can write Eq. (la) for
each value of log exposure, as follows:

£1 =f+cF(x1+h) =f+cu1.
2 = f+ cF(x: + h) =f + cu. (2a)

Zi=f+cFlxx + h) =f+ cun
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1. The investigator chooses an actual D-log E
relationship F(x) against which he wants to
compare the density data from each of his
test strips. His choice might be an experi-
mental standard or control.

2. The investigator then chooses and names a
small number of ways in which this reference
curve may be altered to produce other curves
which he can easily visualize. He associates
the amount of these changes with parameter
values by, 6., .. .bn.

3. After choosing in this way a small number of
sensitometric parameters b, b., ...... b,, he
then employs digital methods to find that
combination of simultaneous changes in the
reference curve which produces a curve f(x;
o P e b,) in best agreement with each
set of density data he wishes to evaluate.

4. He finally interprets the amounts of b, b, . ..
b, as a specification, in his own terms, of the

density—exposure relationship of each test
strip.

The parameter definitions may be tailored to the
needs of the individual experimenter.

Method for Computing h, ¢, and f

The problem is to find those values of A, ¢, and f which
minimize.

k k
8S = T (z1=4pt = Z (2. — f — cu)®. (3a)
i=1 i=1
Given a set of densities, z;, z», ..., 24, treat SS as a

function of h, ¢, and f and find its minimum. At the
minimum, the first partial derivatives of SS with respect
to h, ¢, and f are simultaneously zero. This fact permits
writing three simultaneous equations which the least-
squares values of A, ¢, and f must satisfy:

0SS/of = — 25 (20 — f — cus) = 0 (4a)
0SS/oc = — 22 (z: — f — eus) (ws) =0 (5a)
0SS/oh = — 22 (zi — f — cui) (W) =0 (Ba)

3

The parameter h enters into these equations in a com-
plex way, but the first two equations can be solved for f
and c in terms of h, and these values of f and ¢ can be
substituted into the third equation. This results in an
equation for f in terms of k, an equation for c in terms of
h, and a third equation, not involving f or ¢, which A must
satisfy:

[ = Zz.W,, (7a)
¢ = ZzX;, (8a)
0 = Zz;Y:, (9a)

where, in (7a), (8a), and (9a), the quantities W;, X;, and
Y are defined by the following series of relationships:
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ui = F(xi + h) u;’ = oF(x;: + h)/oh

w = (1/k) Zu: u' = (1/k) Zu/

Vi =ui—u v/ =u’ —u'’

U = Zu? U’ = Zwvw,’

Xi = (i/U) Y, =v — (U/Uw:

W = (1/k) — uX) (10a)

Equations (7a), (8a), and (9a) are the basis for finding
the least-squares values of f, ¢, and h. The quantities
W, X;,and Y;fori = 1, 2, ..., k are each functions of A,
which do not vary with the measured densities 2; or the
values of the parameters ¢ and h. The least-squares
value of 2 must satisfy Eq. (9a). When substituted into
Eqgs. (7a) and (8a), it will yield the least-squares values of
f and c.

Thus far, the necessary relationships have been estab-
lished which the parameters f, ¢, and A must bear to the
measured densities z;, 2, ..., 2i, but a practical method
for their use in an automatic computer has not been
indicated. In particular, it has not been indicated how
the functions of h represented by W, X, and Y may be
simulated for digital computations. A practical way is
to approximate each of these functions of A by a poly-
nomial of degree r:

Wi = aiy + anh + ach®* + ... + aih”  (1la)

X; = 8o+ Buk + Bk + ... + Bih”  (12a)
Yi = vio + vah + yich? + ... + vk (13a)

Egs. (7a), (8a), and (9a) can be written in a form which
involves only multiplication and addition:

f =A,+ Ah 4+ Ak + ... + AW (14a)

c

By + Bih + B:h? + ... + B.A (15a)
Co + Cih + Coh? + . ..

o
I

+ C.h' (16a)
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where A; = Daiz: AN T R e (17a)
; I
B; = Zfijz: (18a)
i
C; = ;’Yifzi (19a)
r

The values of «i;, Bi;, and v:; may be chosen as con-
stants for a particular reference curve and set of log E
values xj, X3, ..., xx. A practical way of choosing these
values is to (1) select several values of & in the region of
interest; (2) obtain corresponding values of u; and u,’
from measurements of the reference curve; (3) evaluate
the Wi, X;, and Y, using Egs. (10a); and (4) fit Egs.
(11a), (12a), and (13a) by ordinary curve-fitting meth-
ods. This work need be done only once for each refer-
ence curve.

Least-squares values of f, ¢, and h for any number of
sets of measured densities zi, 2s, ..., zx may then be ob-
tained by the following procedure: ;

1. Givenzy,2s, ..., 2 valuesof A;, B;, and C, for j =
1, 2, ..., r are obtained from Egs. (17a), (18a), and
(19a).

2. Using an appropriate root-sclving method, a value
of h is found to satisfy the polynomial (16a).

3. Values of f and ¢ are obtained by substituting this
least-squares value of h into Egs. (14a) and (15a).

This method of evaluating f, ¢, and & has these advan-
tages over other possible methods:

1. The equations are easily programmed for an auto-
matic computer. !

2. The only approximations involved are in simulating '
W, X, and Y by polynomials. These polynomials |
may be taken of sufficient degree to assure adequate
accuracy over the range of interest.

3. Except for one calculation of the root of a poly- |
nomial, computations are direct and involve only |

multiplication and addition. {

T






